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Potential symmetries and solutions by .reduction of partial 
differential equations 

Edvige F'ucci and Giuseppe Saccomandi 
Istituto di Energetiea, Universit2 degli Studi di Perugia, 06100 Perugia, Italy 

Received 12 June 1992 

Abstract. We determine some necessary conditions for a given partial differential equation 
8, written in conservative form to admit a potential symmetry (PS). A PS of 8: is a point 
symmetry of the auxiliary system Yb obtained introducing a potential as further unknown 
function, then a PS leads to the construction of solutions via the classical reduction method. 
Given a PS, we introduce an algorithm that allows us to determine a class of 8:-solutions 
which includes the ones obtained as invariant solutions under the related poh t  symmetry 
of Yp. As examples, we consider a Fokker-Planck equation, a wave equation in non- 
homogeneous media and a quasilinear wave equation. 

1. Introduction 

For a partial differential equation (PDE) 8 in two variables, the reduction procedure 
is based on the use of a similarity variable, which allows to get solutions of the original 
PDE 8 by integration of an ordinary differential equation (ODE). 

Reduction procedures are used to search solutions which are invariant under local 
symmetries, classical and weak [l, 21. In [3], it is proved that the reduction procedure, 
which uses non-classical symmetries, includes the direct reduction method, defined in 

In [6], Bluman and others suggested a method to find a new class of symmetries 
for a PDE %', in case it is written in conservative form. They analysed the Lie symmetries 
of the system 9, that is obtained introducing a potential as further unknown function. 
Any group 9s of Lie transformations for 9, induces a symmetry for %; when at least 
one of the generators of ss (associated to the variables and the unknown function~of 
%) depends explicitly on the potential, then the corresponding symmetry of %' is neither 
a point nor a Lie-Backlund symmetry. These new symmetries of % are called potential 
symmetries. 

In this paper, we determine some necessary conditions for an equation, written in 
conservative form, to admit potential symmetries. 

We prove that the only equations which can admit potential symmetries are those 
in which either the flux or the density are functions depending at most on the first 
derivatives of the unknown function. A further examination speci6es the possible forms 
and gives a characterization of some properties of generators. 

The potential symmetries of 8 being point symmetries of the system Y,, can be 
determined by Lie's algorithm; this fact makes the potential symmetries useful in 
looking for solutions of 8 using a reduction method. We can compute the solutions 
9 for the invariant surface conditions of the group sS.'The invariant solutions of .YP 
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are the solutions 5” which are also solutions of .Yp. Thesesolutions will give naturally 
a class, PE, of solutions for 8 [7]. In P there may exist also solutions for 8 which 
are not in PE; these are determined by direct substitution of 9 in 8. 

As examples we consider a Fokker-Planck equation, a wave equation in non- 
homogeneous media and a quasilinear wave equation. 

E Pucci and G Saccomandi 

2. Conservative forms 

A PDE 8 of order n, in the unknown function u(x, t )  is written in a conservative form 
if it has the form 

D,F - D,G = 0. (2.1) 

Here, the density F and the flow G are functions of (x, t, U, U , .  . . , U ), U stands for 

the set of kth order derivatives of U, while D, and D, are the operators of total 
derivation wrt x and t. Clearly, a PDE can be written in conservative form (2.1) only 
if it is quasilinear. 

If it possible to define a density F and a flow G and write a PDE in the form (U), 
then the same can be done with an inhi te  number of other densities and flows, related 
to the first by 

1 n-1 k 

3 = F + ~ , i i  B = G+ D,I? (2.2) 

with an arbitrary regular function H(x ,  t, U, U,. . . , U,. . . ). 

not related by the relation (2.2). 

to be unity) 

I k 

There could also exist, for certain equations, several flows and densities which are 

For example the Fokker-Planck equation (where we have set physical coefficients 

E1 uI - U ,  -XU, - U 0 (2.3) 
maybe written in conservative formwith the following two choices of flows and densities 
F , = u  G,=u,+xu ( 2 . 4 ~ )  

and 

exp(xZ/2) d x - u  exp(xz/2). (2.4b) 

Similarly, for the wave equation in non-homogeneous media (where we have set 
physical coefficients to be unity) 

.Ez- uu -xu, = 0 (2.5) 
there exist the following two choices 

Fl = U J X  G I = &  
and 

Fz = ut G,= XU, - U .  

( 2 . 6 ~ )  

(2.66) 

By considering a potential v(x, t )  as an auxiliary unknown function, the following 
system .Yp can be associated with (2.1): 

U, = F U, = G. (2.7) 
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The forms (2.2) are equivalent in the following sense: the corresponding systems 
Yp are the same, if the definition of U only is changed. On the other hand, densities 
and flows of the form (2.4) or (2.6) are not equivalent. Hence, when a PDE can be 
written in conservative form in more than one way (not equivalent), it is essential to 
specify which one is the considered conservative form when we are looking for potential 
symmetries. In the last section, we will see that (2.5) admits potential symmetries when 
written in conservative form by means of F, and GI; on the contrary, there are no 
such symmetries if it is assumed that the conservative form makes use of Fz and Gz. 

3. Potential symmetries 

A point symmetry group for Yp is defined by the following equations: 

x'=x+&c(q t ,u, U ) + O ( & Z )  t '= t+&7(X, fu ,U)+O(eZ)  

u ' = u + e 7 ( x ,  t, U, U ) + O ( E 2 )  u'=u+e+(x,  t, U, u)+O(eZ) 

and it is completely determined by the generators 5, T, 7,+. Point symmetries, which 
verify &+ T:+ 7: = 0, correspond to point symmetries of 53. Instead,we obtain potential 
symmetries of 8, if 52 + T:+ q: > 0. 

It is well known that the homogeneous linear system which characterizes the 
generators is obtained from 

(3.1) %(.-I) 
(0 ,  - G)I Y~ = 0 (0,  - F)I = 0 %("-I) 

which must hold identically. Here %("-') is the operator 

~ a a  a %("-')= c-+T-+7-++- 
JX a t  au J U  

Here 

Jr+sU a'+% 
ax'Jts axrats 

U, =- U, =- r , s c N o  

and Ug) and V?) are extensions of order k =  rfs ( r  times in x and s times in t )  of 
7 and +, respectively. Observe that U::) depends on the derivatives of U of order r + s 
in the following way: 

U:) = u,s(f"ux + T"U, - qJ + i?:? 
where i?:? does not depend on the derivatives of U of order k = r+  s. 

derivative; say 0. Hence we have that 
Let 53 be of order n > 2; clearly, at least one, either F or G, depends on the (n - 1)st 

where the given terms are the only ones that depend on the (n - 1)st-order derivatives 
of U. 
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Let F be o f  order h s n - 1 ,  that is h = n - l - i i f o r  some E E N ~ .  If we want to 
evaluate (3.2) on the manifold Y,, besides (2.7), we have to consider the differential 
consequences of U, - F = 0, up to order L; then, we have to substitute all derivatives 
o f  U in (3.2) up to order 6+ 1, but the pure derivatives in t of order greater than 1. 
Such derivatives act on the explicit term in (3.2) only if A+ 1 = n - 1, that is only if 
h = 1. Then, the following theorem may be proved. 

Theorem 1. The necessary conditions for (2.1), of order n > 2 ,  to admit potential 
symmetries is that 

and F = F(x ,  f, U, U,, ut). -- -0 
aG 

at+, 
(3.3) 

(Clearly, an analogous theorem holds if we change G to F and f to x in (3.3).) 

Since for n = 2, F = F(x,  t, U, U,, U,) and G = G(x,  f, U, U,, U,), we have shown that 
potential symmetries can exist only if the density or the flow depends at most on the 
first derivatives of U ;  now, we want to get a better characterization of this dependence 
and of the structure of the generators. 

Assume the first equation of Yp in the form 

U, = F ( 5  t, Y U,, ut). (3.4) 

+ F ( 5 x  + 5”UJ - 4”) - +.UX = 0. 

Equation (3 .5)  implies that (3.4) must be of the form 

~ ~ = H ( * t , ~ u , ) u , + K ( x , f , u , u , ) .  

Hence (3.5) and (3.6) satisfy the following relations: 

aH aK 
a U, au, 
- [KT. + T= - H(?lV - [,U,)] + T”H--- H2& + HT” = 0 

aH aH aH 
ax at au 

+ H ( &  - rr + 7. - 4”) - e-- T-- q-+2HK5,  = 0 (3.10) 
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+K'& + K ( &  +&U, - A) + ~ ( 7 ,  --&4 - - A  = 0. (3.12) 

For (3.8), there are the following possibilities: 

(1) H = H ( & t , u )  T.#O 

(2) T,=o. 

Case (1). 
From (3.11), it follows that 

uAH5. - 7.) - (T~ + Hq.) K =  
7" 

which verilies (3.9) identically..Equations (3.10) and (3.12) give relations between H 
and the generators. 

Case (2). 
From (3.11) it follows that H = (T&=+ T, ) / (~ .U~  - 7.) which is compatible with (3.9) 
if and only if 

~ ( 2 a )  H = s / 5 .  50#0  7"#0 Tr5, + TUqu = 0 
(2b) H = - T /  x 7. 7" # 0~ r,#O 6" = T" = 0 

(2c) H = O  T~ = 7.. =O. 

In cases (2a) and (2b), from (3.10) we may infer that 6, q, 4 are at most linear in 
U and that K is linear in I&. Equations (3.10) and (3.12) establish relations between 
the generators and-the coefficients of that linear form. In case (2c), we have that (3.9), 
(3.101, (3.11) are identically verified, while (3.12) assumes the simplified form that is 
obtained by setting H = 0, and it defines K. 

In conclusion we have proved the following: 

Theorem 2. Equation (2.1) admits symmetry potentials only if equation (3.4) assumes 
one of the following forms: 

(3.13) ux=H(& t, u)ut+Ki(& t, u ) u ~ + K z ( x ,  t , ~ ~ )  

where H # 0; otherwise 

U, = K ( r  t, Y U,) (3.14) 

and in this case is 7 = T( t). 

If K in (3.14) is a polynomial of degree n in U, from (3.12), when n > 3  (i.e. 
2n - 1 > n + 1) it follows that 5. = q. = 0. Therefore we have: 

Theorem 3. If K in (3.14) is a polynomial of degree n in U,, there exist potential 
symmetries only if n S 2 .  
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4. Solutions by reduction 

Let % be a partial differential equation which can be written in conserved form with 
a choice of F and G which satisfies the necessary conditions of the last section. We 
suppose to have determined a potential symmetry of 8. Now it is interesting to clarify 
how it is possible to use these symmetries to find exact solutions by reduction methods. 

(4.1) 

E Atcci and G Saccomandi 

Given a point symmetry for SP,, the invariant surface conditions are 

f, Y u)ux+'dx,  t, Y 'J)Ut-17(5 t, U, U ) = o  

t ( x ,  t, U, U ) U x + T ( X ,  t, 4 U)%-'#'(& f, Y u)=o. (4.2) 

The solutions of the associated characteristic system are given by three independent 
integrals 

d x ,  t, Y 0) = CO S Z b ,  t, U, 0) = c1 4 5  t, Y 0) = c2 (4.3) 

with J ( a ,  s2, s3)/J(y U) of rank 2. 
The solutions of (4.1) and (4.2) are defined as one-parameter families of characteris- 

tic curves (4.3). If we assume eo= z as parameter and c,  = h,(z), c2= h2(z) from (4.3) 
we obtain 

U = u s  i, 5 h&), M z ) )  

U = V(& t, 2, hi(z) ,  hz(z))  

G(x, f, 2, h,(z), h 2 ( ~ ) ) = 0 .  

(4.4) 

(4.5) 

(4.6) 

The last equation defines implicitly the similarity variable z as function of (x, t ) .  We 
point out that (4.4) is a family of solutions of the second-order equation 

*(x, t, U, U, 4 = 0 (4.7) 
1 2  

that is obtained by eliminating U between (4.1) and (4.2). 
The invariant solutions of .Yp are given by (4.4) and (4.5) where the hj ( z )  are the 

solutions of the ordinary system Y, which is obtained by substitution in Yp. % being 
a differential consequence of SP,, the solutions of 9, give those solutions SE of %, 
which verify the differential relation 

f (&  i, U, U,. . . , U )=O (4.8) 
1 "-1 

obtained by eliminating U between (4.1) and 

eF+rG-'#'=O. (4.9) 

We can determine a family Pi of &solutions by direct introduction of (4.4) and 
(4.6) in g. We obtain, in this way, a relation involving z, h , ,  h,, the derivative up to 
order n and one parameter given by the x or the f. By imposing that the relation is 
identically zero for any value of the parameter, this will result in an ordinary system 
9 on the hj(z ) .  9JZ is given by (4.4) where hj(z )  are solutions of 9; then 9% is a 
family of solutions for (4.7). On the other hand SE, besides (4.7), verifies also (4.8), 
then SE is enclosed in PE. In [7] and [SI potential symmetries have been applied to 
obtain only the solutions SE. Here we apply potential symmetries to obtain the wider 
class PE of %solutions. 
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5. Examples 

In this section we clarify the generalization of the classical reduction method above 
introduced by some examples. 

Example 1. 
For the Fokker-Plank equation (2.3), if we consider the corresponding system 

U, = U U, = U, +xu (5.1) 
which is a particular case of (3.14), we obtain point symmetries with the following 
generators: 

%': .$= -x exp(2f) T =  -exp(2t) q=(uxz+2xu+2u) exp(2t) 

4 = u(xz+l)  exp(2t) 

g3: .$ = exp(-t) T = q l = @ = o  
z4: c= -x exp(-2t) T =  exp(-2t) q = U  exp(-2t) + = O  
%*: %'=I .$=q=4=o 
g6: 5 = T = o  ?)'U $ = U  

Zz: 5 = exp(t) T = o  q = --(=+U) exp(t) 4 = -ux exp(t) 

and a-dimensional symmetry, which is a consequence of linearity. In all the symmetries 
above, only 2Zl and 2Zz are potential symmetries for (2.3). 

For the potential symmetry El the characteristic system related to the invariant 
surface conditions 

xu, + U, + llxz+2ux +2u = 0 (5.2) 

xu,+ U,+ u(x2+1) =o (5.3) 

c,, = x-' exp( t)  c, = ux exp(x2/2) cz=(uxz+ux3) exp(xz/2). (5.4) 

admits the following three integrals 

Then the solutions of (5.2), (5;3) are 

U =(hZ(~)x-z--hl(z)) exp(-xz/2) 

U = h,(z)x-'exp(-x2/2) (5.5) 
z = x-' exp( t). 

Here the equation (4.7) reads 

f = u , ~  +2xux, + x'u, + (2x2+2)u, + (2x3+3x)ux + (x4+4x2)u = 0. (5.6) 
To find the solutions Fi, we introduce (5.51, in (2.3) obtaining 

which must hold for any value of t. In this way we have the system 9: 
zz (h~z2+6h;z  +6hz) + exp(2t)(2hz -2zh: - z2h;) = 0 

h;zz+6h;z+6hz= 0 . .  
h;zz+2h:z-2h2= 0. 

The family FE is therefore: 

U = [a,(l  -xZ)-a2x exp(t)+ b,(3x-x3) exp(-t)+ b2 exp(2t)I exp(-2t-x2/2) 

where ai, bi are arbitrary constants. 
(5.7) 
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The family FE is given by the functions (5.7) which are also solutions of 
7 j  = (x3-x)ux+(x2+ l )u,  + u(2-xz+x4) = 0 (5.8) 

We point out that the (5.6) can be viewed, in a formal way, as an invariant surface 
obtained by setting b, = bz=O. 

condition of a second-order generalized symmetry with evolutionary operator [I] 

a g =  q-. 
au (5.9) 

We can check that 

$?(2’E, = AooE, +A,,,D,E, +AolD,E, + A20D,El+A11D,,E1+Ao2D,,E, + pq 

where the Lagrange multipliers are 

(5.10) 

Aoo=x4~8x2+8 A = 2x3 + 7x Aol=2x2+6 

AZo=x2 A,,=Zx Aoz= 1 p = -4. 

The relation (5.10) suggests interpreting the generalized symmetry (5.9) as a non-classical 
generalized symmetry for (2.3), in accordance with the definition of non-classical point 
symmetry. 

On the other hand the relation (5.8), which is linear in U, and ut, is the invariant 
surface condition of the non-classical point symmetry of (2.3), with operator 

I 2 - x  a a x2-x4-2 a 
g=- -+-+U - 

x2+i  ax a t  xZ+i au’ 

By the same procedure we find that the family PE related to Zz is given by 

U = (e, - c, exp(-t)x) exp(-x2/2). 

From this family the FE solutions are obtained by setting e, = 0. 

the system gp 

U, = U exp(xz/2) dx 

It admits only the point symmetries corresponding to the generators 

The second conservative form (2.4), which is again a particular case of (3.14), gives 

v,=(u,+m) exp(x2/2) dx-u exp(xz/2). (5.11) I I 
2,: 7=1  ( = T = + = o  
g2: ( = T = o  7l=u + = U  

besides the co-dimensional symmetry. Clearly none of those symmetries is potential. 

Example 2. 
For the wave equation in non-homogeneous media (2.5), if we consider the correspond- 
ing system .Yo 

U, = u , / x  0, = U, (5.12) 

which is a particular case of (3.13) ( H  = l/x, K ,  = Kz = O ) ,  we obtain only one potential 
symmetry [7], i.e. the point symmetry of (5.12) associated with the generators 

2 6 = 4Xf r = 4 x + t 2  7 = -2vx +=-Ztv-Zu. (5.13) 
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The solutions of the invariant surface conditions of the vector field (5.13) are 
U = t x - 1 / 4 h l ( z ) ~ 2 x 1 / 4 h 2 ( 2 j  . t ~ - ” 4 h , ( z ) - 2 ~ - 1 / 4 h , ( ~ )  

z = x  ( t  -4x ) .  
-112 2 (5.14) 

Here the equation (4.7) reads: 

v = ( 16x2+8xt2+ t4)u,, +(32xzt+Sxt3)ux,+ 16x2t2u_ 

+16xtu,+(16x2+12xt2)u,-4xu=0. (5.15) 

The  FE solutions are 

U = a l t (  t z - 4 ~ ) - ’ I 2 +  U ~ X (  t * -4~) - ’”+  b,tx( f 2 - 4 ~ ) - 5 ’ 2 +  b2( t Z  - 4 ~ ) ’ ”  

where a,, bi are arbitrary constants. 

(5.16) 

The family FE is given by the functions (5.16) which are also solutions of 

;i = (4x2-3xt2)ux - t3U,+2XU = 0 (5.17) 

obtained for b, = bz = 0. 
In this case (5.15) is the invariant condition surface of a classical generalized 

symmetry of (2.5),  and (5.17) is the invariant condition surface of a non-classical point 
symmetry of (2.5). 

If we consider the system gp 
ox = ut U, = xu, -U 

(particular case of (3.13) with H = 1 and KI = K2=O),  we recognize that the only 
potential symmetry is 

&: 5 = 4xt .r=4x+tz  q = - 2 u  ,$ = 2to -2xu. 

The solutions PE are as in (5.16), obtained using the previous conservative form, and 
the solutions FE are obtained for a, =a2=0 in (5.16). 

Example 3. 
As the last example we consider the quasilinear hyperbolic equation 

Ut, = [f (u)u*lx f E C2(W f’0 (5.18) 
which was extensively studied in [ 9 ] .  If we consider the corresponding system .Yp 

0, = ut U, =f (U)UX.~ (5.19) 
obviously the first equation is a particular case of (3 .13 )  with H = 1, K ,  = K2=0  and 
it easy to check that for every choice of the arbitrary functionf; (5.19) admits the point 
symmetry associated with the generators , 
E c = o + x  r = u + t  q = o  ’ ,$=o (5.20) 

which is a potential symmetry of (5.19). 
The solutions of the invariant surface conditions of the vector field (5.20) are 

U = h,(z) o=hz(z) . (5.21) 

with the similarity variable implicitly defined by 

( t + h , ) z - ( x + h , )  = 0. (5.22) 

. .  . , .  . . . ,. Here the equation (4.7) reads . , . .  
~ ~ ~ u , + u , , u , - 2 u , u , u , , = o .  2 2 (5.23) 
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The system 9 is 

E Pucci and G Saccomandi 

h:z+ hi=O hY+ h&z = 0 

and the system 9 is 
h!t 1 z 2 +&hi- fh:'-(h:)'f=O 

(hlhg- h:h:+ h,hY)z2+ (2hIh: -2h:h:- (h1)3f)z+ (h:)'(h$- h,)f 

+(h$h;- h1h;- h:h,"+2(h:)') f = O  

where 

If we assume f = log' U, the solutions of 9 are 

( 9  hl =constant h2 = constant 

(ii) h,=exp(z) h2= (1 -2) exp(z)+ c 

(22- 1) exp(r)+ tz+x - c = 0 

(5.24) 

(5.25) 

(5.26) 

(iii) h, =exp(-z) h,= - ( l+z )  exp(-z)+c 

( t z  - x - c) exp(z) +2z + 1 = 0. 

We can observe that the system 9 admits other solutions than (5.26), for example 

h, = exp(z) h2= e exp(z) ( z  - c )  exp(z)+ t z - x  = 0 

which is not a solution of 9. 
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